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Nos principios déste século uma série de fendmenos vieram por em davida
a aplicabilidade da Fisica Cléssica a processos em nivel atémico. Os principais
sfo — 1 — A radiag8o do corpo negro. Aplicando a estatistica cldssica a radiagio
no interior de uma caixa (corpo negro) a temperatura T,Rayleigh e Jeans obtiveram

o0 scguinte resultado para a densidade de encrgia por unidade de frequéncia.
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Logo a encrgia total. E = CO %;

Para evitar 8sto paradoxo Planck (1900) introduziu a audaz idéia de que a absorgdo
e a cmissfo da radiag8o & feita de mancira discrcta atravéds de quantas de energia

E = hv, Com isto a férmula & :
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Do ponto de vista da Pisica Cldssica 8stc resultado 8 paradoxal j& que a  cnergia
do eletron nfo deponde de intensidade de luz mas sé de sua frequénciae

Para aplicar 8stc cfcito Einstein (1906) cestendeu a idéia de Planck postu
lando que a radiacd@o eletromagndtica seria intrisicamonte constituida de quantas
com energia E = hV como sc fssem corpisculos cuja encrgia depende de  frequéncia
da radiagdo (fotons)a

Outra confirmag¢do de naturcza corpuscular de radiagdo cncontra—sc no ofci
to Compton (1923),

3 - O espectro atémico discreto. As oxperiéneias do Putherford levaram ao moddlo
planctdrio para os dtomos ondo os micleos pesados ¢ g¢arrcgados positivamento
tcriam orbitando ao sou redor os olectrons negativos. Dc acdrdo com 8ste modd
lo aplicando as lecis da cletrodindmica clédssica os ecletrons sendo particulas
carrcgadas teriam que radiar perdendo cnergia ¢ aproximando-sc do ndcleo onde
seriam finalmento absorvidos., Aldém disso a medida que sc aproximariam do ni
cleco aumentariam a sua velocidade angular o portanto o seu cspectro de radia
¢do scria continuo. O gque sc observa contudo sdo ralas espectrais perfeitamen

te bem definidas obedccendo por exemplo no Atomo de Hidrogdnio, a férmula do



Balmar na rcgido do visivel,

V=R (- 5) V=R (5 -2)
4 m n m

A cxplicagdo do cardter discrcto dos espectros atdmicos foi obtida por Bohr (1913)
numa oxtraordiniria sintesc das idéias de Planck, Einstein ¢ Rutherford. Bohr in
troduziu a nogdo de quotizagdo das Srbitas dos clectrons postulando que as Unicas
érbitas pormitidas scriam as quec satisfizessem a rolagdo L = n (A = h/271 L mo
montum angular e quo os cloctrons poderiam pular dc uma érbita para outra e¢mitin

do ou absorvendo um foton com E = hV. de aclrdo com a férmula de Einstcine

4

0 mod8lo dc Bohr para o dtomo decu um ospoctro atémico om pleno ac6rdo com o obscr
vado oxperimentalmente para o Ztomo de Hidrogdnio,
A sua rogra do quantizagdo ostondida por Sommerfcld (1916) para o caso

do um sistoma periédico qualguer
.%Pidqi=nih

forma a basc da chamada vclha mocédnica quintica que so doscenvolveu entre 1913 o]
1925, Esta teoria rctém ainda as iddias bdsicas da fisica clédssica impondo rogras
de quantizag8o ad-hoc que tornam discretas Quantidados gque classicamente seriam
continuas, Por isto mesmo logo porcebeu~sc que cla seria simplesmente um clo en
trc a fisica cléssica o uma nova tecoria quo ainda costava por vire A impossibilida
do de prevor a intensidade do linhas ospectrais o mau acdrdo com os espectros de
4tomos mais complicados ¢ o ospectro Raman roforgou a necessidade de procurar uma
nova teoria queo rcformularia de mancira mais dréstica as iddias cléssicase Esta
reformulagao veio simultancamente por dois caminhose. O 12 iniciou-sc com a obscr
vagdo de Do Broglia (1924) dc que da mesma forma quo a luz fondmeno clédssicamente
ondulatério oxibe aspectos corpuscularcs as partfculas materiais como o olcctron
por cxemplo deveria possuir propricdades ondulatédrias cstando a clas associada
uma onda com E =Hw , D =% Ko

Estag ondas do matdria foram dirctamontc dotcctadas por Davidson-Germen (1921) na
difragao de clectrons por um cristal.

A iddia gque De Broglia fazia dcstas ondas era bastanto grosscira como
as ondas produzidas por um barcoy, mas descnvolyida por Schroodinger (1925) levou
& Mocénica Ondulatéria o a Eq. dc Schrocdinger.

0 22 caminho quo levou & nova mecdnica qudntica foi percorrido por
Heisenberg ¢ § de certa forma mais profundo porquo basoou=sc cm uma .rcavaliagao
dréstica dos conceitos cldssicos quando aplicados ao domfinio atdémico. Hcisonberg
(1925) partiu da obsrvagdo de que as idéias cldssicas quando aplicadas ao domfnio
atdmico provavelmonto nfo fazom scntido pois est@o bascadas em nogdos como P. cxe

érbita de um clectron que w80 podom scor observadas. Decidia cntdo formular sua tc
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oris cm térmos das quantidades diretamentc obscrviveis como frequdnecias difcrengas
de cnergia ctce ¢ criou a sua mcecénica das matrizos. Embora & primeira vista sua
teoria seja beom diferente da de Schroedinger logo verificou7éc a cquivalénecia en
tre as mesmas. Uma andlise mais extonsa das limitagSes da aplicagdo de idéias clés
sicas ao dominio atdmico feita pelo prdéprio Heisenberg ¢ por Bohr levou & . chamada

Interprctag@o de Copcnhagen da Mecdnica Quintica que 8 a mais accita atualmente.

- I =~

Vamos iniciar o curso prdpriamente dito ilustrando cstas limitagbes das
cldssicas quando cextrapoladas para fora do scu dominio najural por mecio de algumas
experiéncias ideais antes de entrar no formalismo da M. Q.

Consideremos assim um feixe de particulas por cxcmplo clcctrons incidin

do s8bre um anteparo com um furo
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De acdrdo com De Broglia ¢ como experimentalmente vorificado por Davidson~Germen

aos electrons devemos associar uma ondae Sc o furo tiver dimenscs pequenas compa

radas com o cumprimcento de onda de De Broglia obteromos uma figura de difragao
Zjéa ~w 3 em completa analogia com a Stica ondulatéria.

Podemos agora complicar a nossa coxperidéneia introduzindo um anteparo com dois fu

ros, Aparcce cntdo um tipica figura de interforéncia,
R U ——
[

e
———
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————
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que ilustra ainda mais dramdticamentc o cardter ondulatério da matéria. Vamos ago
ra diminuindo a intcnsidade do feixo de clectrons até atingir uma intensidade bas
tante reduzida, digamos um clectron por minuto, Notamos ont8o que de minuto em mi
nuto um ponto do nosso ecran aparecerd iluminado como se uma partfcula ali batessec.
Os pontos se distribuirdo do mancira bastante irregular mas sc¢ osperarmos bastante
tempo e langarmos n? de pontos iluminados versus posig8o, reobtcmos a figura de in
terferéncias Duas ligdes podem ser daqui coxtrafdase A 12 ¢ 2 de que os oleg¢trons
apesar de exibirem aspcctos ondulatdrios comportam~se também como partfculases A 22
é a de quc os aspcctos ondulatérios ndo sfo devidos a um cfeito do interagdo de um
grande mimeoro de particulas mas quc cst@o prescntes mesmo cm cxperiéneias cnvolven

do clectron onde assumem um cardter cstatfstico (ondas de probabilidade). Isto im
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plica na dualidado onda=corpisculo que possui um aspocto aparcntemento paradoxal.

Assim vejamos: Se considorarmos os eloctrons como particulas poderiamos
dizer que ao atravessar o anteparo 8le passa ou pold 192 ou pelo 29 buraco.Mas nds
te caso a figura do interferfncila observada torna~so inteiramente imcompreensivel.
Podemos dizcr assim com certeza que ao atravessar o anteparo o clectron nao se
comporta como partfcula e que ndo faz sontido perguntar por qual, dos furos 81c
passou ou afirmar que 8le nocossdriamente passou por um dos doise. Por outro lado
a0 bater no ecran o electron ndo mais so comporta como uma onda que teria uma den
sidado de energia proporcional a J’V/(x)l 2 e que sensibilizaria o ccran em 18
da a sua extonsdo ao passo que sOmente um ponto é sensibilizadoj ¢ passa a se com

portar como particula. Vemos assim quo uma das caracteristicas bdsicas de siste
mas quinticos & que 0 sou comportamento como onda ou como particula depcnde  dos
arranjos experimentais a que estdo sujeitos.

0 ecran fluorescentc que permite uma medida da localizagdo do electron
oxibe a _sua caracteristica corpuscular. O anteparo por outro lado oxibe a sua ca
racterfstica ondulatéria. As manifestagdes de onda ou corpisculo ngo acontecem
simulténeamentc mas s30 complementares. (Princfpio de¢ Complementaridade — Bohr).

880 visdos nossas difcrentes do uma mesma realidade que se manifesta de
diversas formas dependendo do modo como a anelisamos.

Para cxplorar um pouco mais a influéncia do arranjo experimental s8bre
o sistema quintico, vamos colocar na vizinhanga dos dois furos do anteparo deteg
tores do olectrons. N8sto caso cortamento podoromos saber o (portanto dizer) se o
olectron passou polo 12 ou 292 buraco. Como compreender agora a nossa figura de ip
torferencla ? N3o precisamos compreend8~la porque cla simplesmente desaparecou .
A presenga de detectores modificou o arranjo exporlmental produzindo uma altera
¢80 no nosso sistoma quintico de tal modo que agora também ao passar pclo antepa
Tro 0 electron se comporta como particula. Mas, dirfio vocds, certamonte scria pos
sivel reduzir ou controlar a alteragdo foita pelo, nosso arranjo experimental s§
bre o sistema ? N&o, a alterag8o 6§ incontroldvels. A infludncia do arranjo expoeri
mental sbbro o sistema estd representada peclas relagSes de incorteza de Helsenborg

ZszﬁfoJ h que exprimo o fato dec que um arranjo oxperimental que fol feito pa
ra localizar um elecctron com grande precisfo (Ax pequono) necessidriamente produz
alteragSes incontroldveis sbébre o seu momento ( A p grande) e vice-versa, 4 vali
dade destas relagdes pode ser ilustrada tomando o nosso cxemplo de um anteparo
com um furo de dimensgo d como arranjo oxperimental para localizar o electron com

coordenada Ax =
~ A

0

X =

L—76 A PA
2 \ Px = P tg 0 VP —p— = 0= ~>APxAx=P)§h

Pars finalizar a discussfo qualitativa vamos frisar quo a tooria quintica é  in

A\

tringicamente indeterministica no sentido de que o mdximo que podcmos dela extra
ir s8o provisdes s8bro a probabilidade dc quo um acontecimento ocorra ou deixe de

ocorrer. (Por exemplo a probabilidaede de o electron atinglr um ponto detcrminado
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do ocran).”O seu cardter probabilistico & totalmente diferonte do que por exemplo

ocorre na teoria cindtica dos gazes (cléssica) onde & fruto do nossa  ignordncia
.

s8bre o8 valores do cnorme némero de parametros do sistcma, No caso quintico a in

determinag8o & intrinsica a prépria natureza dos fendmenos. (Interpretagdo de Co
ponhagen).

- IIT =~

0 cardtcer ondulatério dos fendmenos quénticos sugere que possamos des
crever o estado do um sistema (por exemplo 1 clectron) por meio de uma, fungao
’yy (g, t) obedecondo a uma equagdo de onda que ainda n8o determinamos. Por oxom
plo para uma particula com momentum P e¢ cncrgia E = p2/2m as relagdes do Do Bro
glia sugerom . 5

- o =i - B
(_}i’ t) c h (2.& om t)a
Axioma 1 = O estado de uma particula & descrito por uma fungdo dec onda ’ay(g, t)

que & em geral comploexa.

Como discutido no cap. II osta onda nao & clédssica com uma densidade de encrgia
proporcional a }W (xzy t) 2

mas umea onda de probabilidadac,

Axioma 2 = A densidade de probabilidade do ao fazermos uma medida de localizagdo

no tempo t encontramos a particula nas vizinhangas de x & IQV(;,t‘.
(Born).

A probabilidade de encontrar a particula em algum ponto do espago scndo 4 obte
mos a chamada condigdo do normalizagdo (7#/(53 t)[2 = 1. A experidneia do antepa
ro com dois furos revola que existc interferdncia entre a onda ;Vl que passa pelo
12 furo e a onda;zyz que passa pelo 29, Isto mostra que a densidade do probabili
dade de a partfcula bater no ecran num dado ponto & dada por/'éyi*gﬂ; 2

[P [7-I

Axioma 3 = (Princfpio de Superposicdo) Se /a&; e a&; sdo fungbes de onda en
t80 ’¥71‘+ ?%/2 também &, Seo 2&& & uma fungZo do onda descrevendo
um dado estado c’y/; descrevou o mosmo estadoe A condigdo de norma

lizag8o limita ¢ & uma faso arbitriria.

o naoc

O princfpio de suporposigd@o mostra que as fungdes dc onda podem ser
tomadas como sendo vetores de um espago vetorial. (Bspago de Hilbort
das fungles de quadrado integravol muito conhocido dos matomgticos),.0
produto escalar dc 2 fungdes ndstc espago § dado por (yﬁ ,gé ) =

* 3 o .
= Ax, t) (x, t) a°x (vorifiquo que satisfaz as prop.do prod

escalar).

Os estados dc um sistoma podem sor represontados por fungles de onda

satisfazendo (}” ,;ﬂ) =f y?{ (}_c_)%(x_c_) d3x = finito (quadrado intg
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gravel) e sempre podcmos (e o faremos) scm perda de generalidade tomar ( ?V,@b) =
= 1,

Vimos ainda h4 pouco que o, aparelho de medida atua sbbre o cstado do sig
toma logo sdbre a sua fungdo dc ondae B razodvel portanto assoclar aos  aparolhos
de medida operadorcs que atuem sdbre os vetores de estado (fungGes de onda).e0 Prin
clpio do Superposiglo sugere que &stos operadores sejam lincarcs.

Como ij/(g)'2 represonta a densidado do probabilidade de que a parti

cula seja localizada nas vizinhangas de x & claro quo o valor médio de x & dado

. (- Y @YW - f V¥ @ 2 Y@ o

Axioma 4 - As grandezas obsorvaveis ostarfio associados oporadores (lineares) her
mitianos ~ O vai?p médio de um observavel O num ostado';ﬂ/é dado  por

(%, Oopw) = 3%* (x) Oop (x) a%x onde 00p & o operador asso

ciado ao obscrvavel.

Obsorvag@o I - Operadores hermitianos s3o os que satisfazem a relagdo

Y, oYy - (¥, oY Y, Y.

A restrig@o a operadores hermitianos vem do fato de que cm qualguor obsorvagao ire

mes obter valores médios reaise

II - B importante frisar que os valores médios acima mencionados correspondem &
nedidas feitas s8bre um grande ndmoro de sistemas todos 8les,com a mesma fun
ga8o dc onda e ndo 3 medidas sucessivas sfbre o mosmo sistema. Isto porgque o
ato de medida altera a fungd@o do onda do sistema, dc modo quc ao fazor medi
das sucessivas nés ngo mais estamos trabalhando com o sistema no mosmo esta

doe

O desvio médio quadrdtico dec um observivel num ostado

Ao?- L (0-<K0y 1B (Y, 0= <o 2P

dé uma medida dc¢ quio bem definida estd grandoza a ser observada no estado em con
siderag80. So o desvio médio quadrdtico & zero a grandoza tem um valor bem determi

nado i, e, t8das as medidas dardo o mesmo rcsultado. Néste caso
Af=0= (0- <oy )3&, (0 - <o>2ﬂ)=
Y- oYY
Ora <:():7 .8 um ndmero real ¢ a equagdc acima nada mais 6 do que  uma
cquagao de autovaloros., Em geral uma equagfo do tipo

O-I]Un - 'On ’}yn

possui um mimero infinito de solugSes com n um Indice discreto ou contfnuo. Os
°y roprescntam os valdres que a grandeza pode tomar efetuando-~se medidas s8bre o]

sistoma. OS.}A/nT sg8o os cstados do sistema correspondentcs a valores bem  defini



-7 =

dos (on) de O. N8o importa qual secja a fungdo do onda inicial do sistoma uma vez
cfetuada a medida O ¢ obtido o autovalor Qn podomos ter ccrtcza do que o sistema
iem éste.valor logo serd descrito por n (redug@o de fungdo do onda pelo ato de
modida). (A rigor s6 & vilido nesta forma simplos para as chamadas medidas de 12

espdcie).

Exemplos de operadores associados a grandezas obscervaveis.

A~ B intuitivo que a medida de posigao estcja associada ao opcrador X definido

() o YW =2 ¥

as autofungdes de (;)op com autovalores a correspondcndo a eostados da particula lo
calizados com a satisfazem

(Xop)¢i () = a ¢ ) = ¢2 (x) = (S-(gg—g)
5(5) = v
jg(g) 7 =1

B - A modida do momentum deve scer representada por (2)0p tal que atuando  sbbre

LS
[}

8

uma, autofungfo i (P. x — Et)
o —i—

“h

i (P.x - Bt) _ i (Pex - Et) .
(P)Op e = = P -o3— 0 que implica-

ria
B, = =1V
Problema - Verifique quc (E)Op c (P)op sfo hermitianos.

Em espagos vetoriais com dimens&o finita & bem sabido que os operadores
hermitianos possuem um conjunto completo de autovetorcs ortogonais. Embora isto
ndo secja nccessiriamento verdadeiro cm um cspago com infinitas dimensBos como & o
ospago das fungdes, sdmente considerarcmos operadores hermitianose. Com esta propri

edade qualquer fung&o pode scr expandida om t8rmos de autofungles.

jV: Zan Vn Com o?/n - on%n
a, = m//n, ¥

Para o caso de autovalorecs contimios a sério deve ser substituida por uma intogral

Por exemplo no caso das autofungSes do operador P tomos

(x) = 1 g(p) et x
(277._)3;2

d°p (Intcgral de Fourier).
g (») = ———75 (x) o
(27 )37? f%ﬂ

—iBoz d3p
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B importantoc notar quec as autofungdes corrcspondentos a autovalores con
tinuos ndo sfo de quadrado integravel o portanto nfo sdo votores préprios do nos
80 espago dec Hilberte Isto contudo no causa dificuldades so nés lombrarmos que
nds nunca podemos preparar um sistema num estado que tenha um valor bom deofinido
de uma grandeza que assumo valores continuos (mesmo cl&ssicamente) o que portanto
as autofungSes correspondcntes a autovalores continuos ndo sdo filsicamonte reali
zdvcise S80 idcalizagles ds vézos muito.ﬁtois mas em qualquer oxperidncia real
nés toremos que o valor dc¢ grandeza contimua nccessdriamento estd num corto inter
valo,

Aplicado ao oxemplo do momentum linecar isto nos lova a fungles de onda

que s8o os chamados pacotes de onda

r+A4p -
‘?Vp+$¥% = ' [ ipex/ dp3 que sfo de quadrado integravcl.
p-Ap/2
Usando agora a cxpansf@o do qualquor vetor-cstado cm temas de autofun

¢Oes do opcrador O obtemos

(}// ?/ anamom%% z

o0 que Jjuntamcnto com

nos leva a interpretagao de ‘ a como sendo a probabilidado (no caso contfnuo

donsidade do probabilidade) do ao fazermos a medida O obtermos o resultado On.

Isto osté em pleno acdrdo com o que foil imposto no Axioma 2 para o caso dc Xe (Vg
rifique).

A ortogonalidade entrc autofungdces correspondentes a autovalores distin
tos corresponde ac fato de serem mlituamente exclusivas as medidas com resultados
diforentes. (Problema — Demonstro a ortogonalidado)o

Na mecédnica clédssica costuma-se caracterizar o estado do uma particula
pela sua posig§O_£ o o sou momentum P, Isto implica na neccssidade de observar si
multéncamente com precisfio arbitrdria x o Pe

Na mecénica quintica as rolagSes de incertcza do Hoisenberg mostram ngo
sor possivel a medida simulténca destas duas grandczase.

Em geral .para <que duas grandozas possam sor simult@neamente observadas &

necessério e suficiente que exista um conjunto completo de autofungdes comuns aos

“ﬂ,pi - ai\pi B, =y 301

Teorema = A condigdo necessdria e suficiente para quec dois operadores  hermitia

dois operadores.

nos A ¢ B tenham um conjunto completo de autofungSes em comum & que

o sou comutador seja nulo
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Problema = Procure demonstrar &ste teorema pelo menosg no caso nao dcgenerado, cm
que & cada autovalor corresponda uma tinica autofungio.

B intuitivo quo teremos em geral o comutador entre dois operadores dan
do uma medida do grau de impossibilidade de obgervar simultédncamente as grandezas

associadas a 8stos operadores. Com efeito seja

[A, B] =10 (&, B, C hermitianos)
e consideremos os operadores hermitianos

Aa, = 4= (4 o ABOP=B- {BY com
EAOP ' ABOP:‘ = 1C.

Os desvios médios quadriticos sdo

B AR A YY)

Tomemos

((O(AA +1AB )‘l// (ozAA +1ABOP)?}/)_(¢ ¢) com o roal
(¢9¢) = (% (°(A Aop -1 ABOP)(C’(AAOP-‘- iABOPw) =0<2 (»SU’AAgpy)_*_ |

+(}I/,AB§p7/’) - i°((7//, ABOPA Ao -AAOPABOPV) 2 AP+ AR -
- X (Y, ) >

Para que esta curva de 29 grau om so ja sempre maior do quo zero & necessdrio o

suficiente que ola nfo tenha zeros sbbre o cixo real ou seja
(W, oY - s ha®As*L 0= Aads > [, CZ/)I/Z

Podomos aplicar osta desigualdade ao caso particular A= X e B =P obtondo uma

deduglo formal das rclagdos de incorteza de Heisenberg, Para isto calculemos

[ ]
{., - 1(-—] 770@:) e - i LY+ 162V - 1{%(;:) =

)_xop ’ pop] = 1{ ou om geral tomando as 3 componontos [_1 9 p_l

(Born—Jordan) ,

= ik i, 3=1, 2, 3

Vemos assim imediatamente quo
Ax A P > (;” ’ ‘E/ZV/) =1/2 (rele de incertoza do Heisenberg)

Por outro lado [xi ’ xj‘} = § possifvel observar simult§

0

D 0 (verifique) neamente as 3 comp. da posi
Dy 5 Psf = -

L + 31 gao,ou as 3 comp. do momon

tume
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Mais alguns excmplos —

Momentum angular - Cldssicamento & dado por L = x A p. Na mecdnica quintica va

mos adotar a mesma oxpressdo substituindo x e p por operadorcs.

-L-op=-}50p/\p0p=—iﬁ£ﬁé'
Em componentos 5 > > 3
Lx=-ih/(y-a—z-zé7—): Ly=—i{(z-é—;-xa—z)=Lz=-ih/(x—a—T—
2.

Procuramos obter agora as autofungdes o autovalores de Lz (Por simetria
os autovalores de Lx e Ly ser8o os mesmos de Lz). Para isto § conveniente traba

lhar em coordonadas polarcs
Y~ scn © cos¢

Yson @ sen ¢

X

Yy

zZ

Y cos @

Nostas coordenadas

axa+aya S, O

3 B *

Lz = = if =~ = = if ( 3¢ >y 3¢ 3z

2
o
A equagBo de autovalores & portanto
. a%-wgﬁ):c;ﬂ(gé) = W(P)ew? —h°—c]5
Mas ’Zf(zn) = 1/(0) > C=n¥h (m=0, 21, T2, ev0 )

Vemos assim a quantizagd@o de componente  do momentum angular que j& havia sido u
sado por Bohr deduzida a partir da Mecénica Quéantica. A constante de normalizag8o

N pode ser obtida impondo a condig8o

ol
[Vppor o Speales 2 sV o

uma fase arbitrdria e n8o observivel),

Podemos agora pcrguntar sec & possivel observar simulté@ncamcnte as 3 com
ponentes do momentum angular,

Para isto nocessitamos das reogras de comutag@o.

| 1z, ij = if Lz , LLy , Lz] = if Ix, LLz , Lx;\? - if Iy

(Verifique) i}

que mostram imcdiatamonte que as 3 componentes do momentum angular nao sfo simultid

neamente observiveis. Contudo o quadrado do momentum angular total
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— 2
L . T = L% 4rL§ 4-Lg = L2 satisfaz
[ 2 <o
L, L~ =0 (verifique)
de modo que & possivel obsorvar simultdncamente o momentum angular total ¢ por

oxemplo a sua componente sogundo o eixo do z. A n8o0 obsorvabilidadc simulténeca de

Ixy Ly, Lz & um clomento importante da nova Mecé@nica Quintica que leva ao resulta

do de que fixado um autovalor do L2, que o cdlculo mostra ser dado por €(€4~1)ﬁ%

( =05 1y 2, aeo)y O méximo autovalor de Lz & dado por h ¢ nfo como indicaria
_“__——ﬁ ‘ *
a fisica cldssica ou a velha meclnica quéntica \/(f + 1)‘ﬁ. Isto leva a uma

imagem intuitiva do momentum angular total precessionando em t8rno do eixo do za

2

G

o
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Por enquanto estivemos estudando a cincmdtica da Moecénica Quénticae 0
problema dinfdmico surge quando procuramos determinar a evolugdo temporal do um
gistemas Como 0 estado de um sistema quéntico & descrito por uma fungf#o,de onda &
claro quo a dinfmica serd especificada por mcio do wna cquagdo do ondase

Considoremos de infcio a onda plana de De Broglice'
o i (p, g - ‘
'?//p (x5 ) = o == (B x = E %) (1)

que doscrovo uma particula livre com momentum ¢ cncrgia bem definidos,.

A relagl@o cléssica cntre energia momentum

E= —£— (2)

representa agora uma, rolag8o entro os autovalores do operador encrgia (ou Hamilto
niana) o do momentum.
De (1) sogue

>
=T %p (z, +) E% (z, *) (3)
. 2 2
CirmP Y w0 =Y, )
) |

Pop

-
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Comparando (3) com (2) obtemos imediatamentc a equagdo de ondas satisfeita por

(1)

3 £2 2 .,
iatyp(g,tp___m_v ?//p(_ t) (4)

(? Laplaciano

Pelo principio de superﬁosigao o pola complcteza das autofungSoes do operador mo

montum a onda mais geral quc descrove uma particula livre seréd
(x,t)=-ﬁ— g B) o5 (Be x-—5— 1) a'p (5)

A lincaridade da equagdo (4) mostra que também (5) satisfard a mesma cquagdo

g;: Ey/(ﬂs +)

Temos ,assim a equagdo de ondas quec desccove a evolugdo tomporal dc uma particula

(Esl 't) (4)

livre. B claro que o caso mais interessante que é o de uma partfcula sujoita a um
potencial ainda estd em aborto,
Podemos tor um guie henristico pare a equagdo mais goral notando que

(4) pode sor obtida da relagdo cléssica (2) mediantc a substituigdo

(5)

P—> ~iR 7V

Considorando (5) como regra geral ¢ lembrando que a cnergia de uma par

tfcula sujoita ao potencial V (x, t) &
2
E:-%_T—f—v(x,t)
chogamos a

Axioma 5 = A ovolugao tomporal da fung@o dc onda de uma particula sujoita a um

potencial V 8 dada pele oquag8o de Schroedingor

w2 Wi - -4 2 Y ¥ (6)
2
0 operador - -—>= 7V 4+ V & o chamado oporador Hamiltoniano (ou ¢

2
nergia) de uma partfcula corrospondendo a expressio cléssica -%;;—-FV

Problema -~ Verifique que o oporador encrgia & hermitiano.
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A partir da oquagdo deo Schroedinger podemos ficilmente obter uma equag

¢a0 que correspondc a conscrvagao de probabilidade

Multiplicando (6) por 7// *obtemos
Y (5, ) g;f(g, 1) -

2

- EY @0 Y e 0@ oV e e o

tomando o complexo conjugado de (6) o multiplicando por 'l/(z, t) oncontramos

- if (%tﬁ—* (x, t) )7//(229 t) =

-é,i (VQ}V*@, t) )7///@, ) + V(zx, tﬂ//* (x, t)77//(£) (8)

Subtraindo (8) de (7) temos apds transformagles simples

aat (W= (x, t)Z// (x5 +)
v < 2 (1//* (x5 +) yé//(z, ) - TP (x )W (x 1) (9)

Esta & uma tfpica equagio de continuidade. (Em tudo semclhantc & oquag8o de conti

nuidadeap/a,t -{—div:]‘* = 0 da cletrodinfmica cldssica que ropresenta a conscr
vagdo de carga).

Como /\-> = 7//}5 % reprosenta a densidade de probabilidade entdo

7 - %%V*Yﬁy - (\z‘sV*ﬂ/S

deve sor ontendida como uma corrente de probabilidade e reescrevemos (9) em forma

compacta como

SEtavi=0 (o)

Da mesma forma que uma cquagdo do tipo (9) na cletrodinfmica cléssica leva a  con

servagdo do cargay, na Mocdnica Quéntica ela conduz a conservagdo de probabilidados

Assim ve jamos: integrando (9) s6bre um volumo V do cspago obtemos

%—\S’p d3x + § diVJT)d3x =0
1%

1

0 usando o teorcma dg¢ Gauss

- ()d3x~='- 5. as (10)
| v 6
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onde 6 reprcsenta a superficic do volume V.
Assim vemos que o docréscimo do probabilidade no volume V serd igual ao fluxo do

corrente do probabilidado para fora do volume

Fazondo agora o volumo tender ao infinito ¢ lembrando que as fungdcs de onda scn

do de quadrado intcgravel sc anulam no infinito o t6rmo a dircita em (10) sc anu
la ¢ obtcmos

d 3

e /3d x =0 (11)
0 que significa que a probabilidado de cncontrar a particula em algum ponto do os
pago ndo sc altera com o tempo (e & sompro igual a 1). A Mecdnica Quintica que

aqui desenvolvemos ngo é capaz portanto do descrever processos de emissfo ou ab

sorgdo de partfculas. (A ndo ser do modo fenomenoldgico introduzindo  potenciais

complexos = oxporimonto).

Na maioria das situagdes dc inter8ssc ffsico os potenciais que atuam s§
bre as particulas nfo depondom explicitamonte do tompo. N8ste caso a oquagdo do

Schrocdinger podo ser simplificada pclo chamado método dc scparagdo das varidveis
i, @e procurarcmos solugdos da forma 1 /(5, t) = §z§(§) X (%),

Introduzindo na equagdo de¢ Schroedinger obtcmos

2 2
if<717<;_>d—§—tiﬁ -x (1) (- BV 4 v )¢(z)

ou dividindo por <b (x) X (%)

ih a X (t)

L2 2
e S - ¢1<§_) 2V v ) P (12)

como o térmo a osquerda cm (12) dcpende sdmentc de t o o a dircita sdmente de
X a igualdadc ontrc ambos significa quo sao constantes ¢ portanto chamando a

constante de E

aX(t) | _ i x(e) = x(t)=o TP /8

dat
2
-h 2
("7 +Vv @ )HIPE =P ()
o0 que nada mais & do que a cquag@o de autovalores para a cnorgias Chamando de-

q&n (5) e} En as solugles genéricas d8ste problema do autovalores vemos quo  pg

la linearidade da cquagdo de Schroedinger ¢ completoza das autofungSes do  opera

dor energia teromos como solugdo geral da equag@o do Schroedinger
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7//(5, t) = Zan ¢n (x) o~ % By t/R (13)

quo generaliza a oxpansdo (5)e Os cooficiontes a, sgo determinados polas condi

¢dos iniciais do probleoma, por exemplo pela fungdo de onda no instantc t. (Notc a

grande analogia entre o que fizemos ¢ o problcma ondulatédrio clédssico de ostudar

o comportamento da radiagdo numa cavidade rossonante),

Vemos assim que para potenciais que ndo dependem de tempo o probloma di

némico podc ser reduzido a obtengdo das autofungSes o autovalores da onergiae

0 problema de autovalorcs para a cnergia § de inter8ssc contral na Mccd
nica Quintica.

Iremos analizd-lo agora com alguns exemplos simplese

Para simplificar estudaremos agora problcmas om uma dimensgo cespacial,
1 - Particula numa caixa. impenctridvel.

Uma caixa impenotrdvol ( que & naturalmentc uma idealizagio) pods scr re
presentada por um potencial

0 para - a,/2 < b4 < a./2

vV (x) = :
00  para ’xl > af2

g/ /1 S LS
NN N N NN

-a/2 0 af? X

A equagdo dc autovalores para a cenergia (também chamada dc cquagdo de
Schroedinger)

_—>1 dimensdo espacial
2

__h2 .
En¢n = ( 2m diZ +V)¢n

na regi8o lxl < a/2 se reduz simplesmonte 3

2 2
SIS A
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que tem por solug8o goeral

¢n (x) =An cos knx+Bn sonknx

2m En
k =
n ’h2
Na regido l xt > af2 V=C0 ¢ a partfcula ndo deve se oncontrar ali logo sua
fungdo de onda & zcro para ‘ x,! > a/2.

Impondo a continuidade da fungdo de onda nos pontos X = _'ta/Z obtemos

0

A cos (kn a/2)+Bn sen (kn a/2)

(@]
1

A cos (kn af2) - B scn (kn a/2)

ou somando ¢ subtraindo

A cos (kn a/2) = 0 ou cos (kn af2) =0 o B =0 (12)
B, sen (k, af2) = 0 ou sen (k, af2) =0 o A, =0 (15)
42 2,712
De (14) temos k_ af2 = (2_+1) T /2 B & =————— (2 4 1)(TT)
n n n 2 n
. "2 ma
n=0,1y ese (16)
de onde tiramos um conjunto infinito de autovalores o autofungdes n (x) =

s A cos k x
n n a./2

A~ devo ser determinado por normalizagéo l¢n (x)[2 dx = 1

- a/2

Do (15) obtemos k a/2=nll = on 17/
h° 2772
B = = (20)°]] n=1, 2, ses (17)
2m a '

com as autofungdes ¢n (x) = B senk x. Ocason=0 é cxcluido aqui pois 1lg

va a ¢n= 0 que néo reproscnta ostado algume Vemos assimy

A - juntando (16) o (17) os autovalores da onergia s@o dados por
2 . . .
“h 2
En='—-—2— (nn) n = 1, 2’ see °

2m a
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com autofungdes que s8o alternadamente simétricas (cos) ou antisimétricas (son)
dopendendo de n sor impar ou par. Isto 8 uma propriedade geral das autofungdes

de potenciais simétricas que serd usada mais tarde cm oxemplos mais complicados.

B - O menor autovalor da energia §

> .
E = -:2—5— (7T)2 # 0.

2m a

8le correspondeo a chamada encrgia de ponto zero que & um ofeito essencialmonto

quintico, pois a partfcula nfo pode ficar em ropouso no interior da caixa (0 quo

daria E = 0) j4 que em virtude das rclagdoes do Heiscnberg

2 2
APaNh;> EN_A_P_.N.i?.
2m 2m a

C - A completoza das autofungbcs da encrgia n8sto eoxemplo nada mais & do que o
conhecido fato de que podomos oxpandir qualquer fung8o definida no intervelo
- a/2, a/2 em termos do uma série de Fourier. Note também a perfeita analogia en
tre o que fizemos e o problema de obtor os modos normais de vibraggo de uma corda

"presa nos pontos - a/2 e a/2.

2 = Particula num pogo de potencial

Ir
O para }xl 4 a/? I I

e ,r
7 -
vV (x) = S ' T /
- e 9
V, para { xl > af2 e . Ly

-4, O a4,

A equag@o de Schroedinger se separa naturalmente em 3 regiSes.

Na regifo II V =0 c tomos

2 2 IT
En¢£I -2 d2 C?n (28)
2m dx

Para I ou II +tcmos

2 2
I,IIT ~"h d I,III
En¢ LT — + vo)én’ (19)

2m dx

Existom dois casos fisicamente distintos ndste probloma

A- EFE V que clissicamente correspondoria a uma particula movimentando-se
entre = a/2 e a/2 que corrosponde ao chamado estado ligado,dan

do valores discrectos para a energila.

B = ZET}'VO que classicamente corrosponderia a uma particula movendo-se ,do

‘

-0 4 + CO que dard um ospoctro continuo para a cnergla.
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Vamos discutir o caso A .+ Temos assim de (18)

D a0 o ]
II 2 mE
¢ (x) = App cos kx - Brp sen kx, k = \/112 (20)
e do (19) como V_ > E
I,TII I,ITT jx , I,III -ix 2m (V, - B)
T(x) = AT 4B e 3 J=|——— (21)
. h

Vemos de (21) que embora clissicamente a partfcula nfo possa penetrar nas regifes
I o ITT quanticamente isto n8o & mais verdadee. Contudo nao devemos esperar que a
- probabilidade dc encontrar a partfcula se torne &O  quando x — * O 0 quo
implica em

A =O, B=O.
Tendo resolvido a equag¢do de Schroedinger om I, II ¢ IITI devemos agora impor a
continuidade da fung@o de onda o de sua 12 derivada om a/2. Isto porque da prd
pria cquagdo 5 o
-"h" 4" -
2 mdx

obtem=ge integrando num pequeno intervalo em t8rno de =+ a/2

e

%(—%46)-%(%—4) —0 ﬂ-—g—+e)- —(F-e)—>o0

dx dx

o que implica na contimiidade de -%é;é{ cm ]t'&/2, ¢ lntegrando mais uma voz

obtem~se a continuidade de 72/.

0 célculo pode ser bastante simplificado sc usarmos o fato dec que as au
tofungSos do operador energia com um potencial simétrico s8o simétricas ou antisi
métricas como j§ foi visto no exemplo anterior (Problema - Procure demonstrar &g
te fato em geral).

Al - Caso simétrico

Néste caso tomamos BII =0 e B =A"=3B

Basta impor a contimuidade no ponte a/2 pois a simetria garante que ola serd tam

bém satisfoite em - a/2.
¢II (a/2) = ¢HI (a/2) —=> & cos (k 8/2) = B o~ a/2 (22)

d fdxll. (a/2) = d?_%&a/z) -k A sen (k _521___) -_jB o a/2 (23)
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k

Dividindo (23) por (22) obtomos a cquagao do autovalores k t g ( 2a

) =3 (24)

Esta equag8o ndo pode ser revolvida cxatamentc mas podemos obter uma solugao gri

fica,.
Por isto & conveniente introduzir as varidvois ;?: ga ’ n-= —%ﬁ—
com
: 2+n2 - 8,2 ( 2m B 2m (V —E) ) - a2 mnV (25)
;- R 42 © 2 v

e escrover (24) como

;+tg; =n (24)

Devemos obter solugSes do (24) e (25) quc,aparocem como intersegdo da curvaé?+t%§'
com a circunfor8ncia (25) no 19 quadranto.
s L I
N fi \\ 3
N\
; A
|

%Z
A

| I |
I | !
' ! |

{ | i ]
! !

!
| | |
| |
} | |

|

)

]

|
AR o>
0 Ty A A 3

Vemos quo a modida que Vo cresce o nimero dc solugdes aumenta e que as novas solu

¢Oes vdo sompre aparccondc na borda do pogo n=0 ou E = Vé e depois vac afun
dando.

A2 - Caso antisimétrico

. N8ste caso tomamos AII =0 ¢ B = =A = =A

As condigdcs dec continuidade da fungdo e sua 12 derivada om a/2 480 a oquaglc do

autovalores

ka)

k cotg ( S = = Jo

Introduzindo novamente ;; e n temos

11 .

'
|
I
|
|
}
|

V4
.W

i 3% i
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Vemos assim que para.um potencial pequeno nao hé solugSes  antisimétri
cas o quo olas v@o surgindo alternadamento com as simétricas. O caso antorior

Vo = > pode sor obtido como situagdo limito (Faga=o0).

Por onquanto cstudamos sdmente o problema B < V, corrospondente &0

cstado ligado ¢ vemos quo ndstce caso os autovalores de cnergia s80 gfetivamonto
discretos correspondendo ao movimento poriddico da particula clédssicae

O probloma E > Vo doixarcmos como oxcercicio pois iremos estudar um

outro quc a éle so assemclha mas & fisicamente mais intercossante.

3 - Barrcira de potoncial -~ (Efeito tuncl)

J 0 para lx{ > af2

Nésto caso tomos a particula sujcita & um potoncial V(x)

\RQO para | x| {a/2

I II IIT
-Q&, 0 o/,

Clédssicamonte uma partfcula vindo dc =0 com E <:Vb soria refletida om —a/2 o

ngo podoria nunca ponetrar na rogifio III. Como voremos isso ndo & verdade em Mocd
nica Quintica ondec oxisto uma probabilidade da partfcula passar para a rogido III
corrospondendo a ofeito tuncl de grande aplicagdo om ostado sélido ( semi-conduto
ros, transistores) o fisica nucloar (desintegragdo atémica, emissao()() etce)

Nas regiSes I o III a oquagdo de Schrocdinger &

2 .2
I,ITT -k 4 I,III I,III ~

_ L TIT ikx | pT,ITT —ikx _ 2111;@

=~
[

Como ndo quercmos particulas vindo de + @ colocamos

BTl - 0, Tomos assim ¢ L(x) = ol oM 433 o2 (26)

46 III(X) _ AIII eikx (27)

(26) descreve portanto a onda incidento o a rofletida o (27) a onda transmitidae

Introduzimos o coeficientc de transmissfo

T = iéEEELE (28)

|+ [
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e o de roflexao IBI/2 _
R = ——— (29)

/ AIIZ
quo d2o uma medida de quanto & transmitido e quanto & rofletido da onda incidento.

A conservag@o de probabilidade implica om /AII2 = /A'III{2+ ,BI,2 ou seja
R+T-=1. ’

Para calcular os coeficicntes R o T brecisamos impor as condigdes do
continuidade om * a/2. Néste caso ndo podemos usar oondiglos de simetria, j& que
a condig8o de contdrno imposta (partfcula vindo do —co ) ndo § simétricae Para

E < Vo que & o caso mais interossante obtemos na regido II

\

. . om (V. - B)
1T jx -Jjx ' o
¢ (x) = Ay e™ - Bpe J = 22
As condigSoes de contimuidade em x = —a/2 dFo
. . . -j a/2 i a/2
fungo a7 af2| p_oik /2 = App e + Brre . (30)
derivada ik (A 07K a/2 - B, oo 8/2) _ ; (App 077 a/2 4 By o a/2 (31

em X = a./2

funggo A-III Gik 3/2 - A-II Oj a/2+ BII G—j 3/2 (32)
derivada ik Arpg otk a/2 j (AII o9 a/2 - Byg b a./2) (33)

De (32) o (33) eliminamos Ar; e Bpp om fungfio do Arpre

Introduzimos em (30) e (31) o obtemos finalmonte A; = otke

(—k— - —1'1—) sen hja]}

. i
AIII [cos hja = >

J

ou seja 2
A
7= .{H’ .. = § R=1=T
1|

cos® hja.-f--}-l- (% - %)2 son° hja

Vemos que para grandes valores deo Ja
-2 ja

Tow e isto & o ofcito tunel

decrescc ridpidamento com a altura do potencial 'Vo 6 com O seou alcance a.
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- VI -

-

Estudaremos agora um tipico problema de evolugdo temporal da fungdo dc
onda de um sistema a saber o movimento de um pacote de onda do uma particula, 1i
vre, Novamento por simplicidade tomaremos o probloms a uma dimonsao espaciale J&

sabemos quo a fungdo de onda mais geral para uma particula livrc & a 3 dimensdes,.

1 . ' 2 3
W(&’ t) == (2ﬂ)372 j‘g (R) O-Tl- (2’.&"_%1‘:) d-p

o a uma dimonsgo

2
1 i -
g (p) o= (px ==5—1) dp

/y/(x’ Y- (212

 Introduzindo k = :%— na Gltima intcgral obtemos

.. . 2
W(x, t) = (2_?';’-)V2— F (k) el (kx -_:ﬁ_zlncl_ t) dk (34)
Con a (k) = (o)t
A inversZo do Fourior do (34) com t = oda
(35)

1 -ikx
a (k) = 227?;T7§ijh3%/(x, o) o dx

do modo quo a(k) pode ser doterminado pela condigdo inicial do problema ¢ introdu
equivale

zindo em (34) nos d4 a fungao do onda cm gqualquer instante futuro. Isto

a resolver o problema de Cauch da Equag@o do Schrocdinger.
a
‘f ﬁ( $) a® (%, t) *—-————-}Lq
1 Xy S e Xy Py
5 Epal ARl

Tomarcmos como ocondigdo inicial para o problema cspecifico que iromos resolvor

_ ‘/ i x - x2
7//("’.°)'<2Mx2>1/4 TR0 AR 08)

onde p & o valor médio do momentum nesta fungdo dc onda

= =\(22;/x(x’ o) = ih ég;x );A/(Xa 0) dx

zjx 8 o desvio médio quadritico
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o o fator garante a normalizagdo

1
(2T Ax%)1/*

\‘(/C//x(x, o) %V(x, 0) dx = 1. (Vorifique oxplicitamentc ostas 3 afirmativas).

Temos as®im um pacote de onda que se dosloca com velocidade média (velocidade de
gTupo )

—

V = B

- e que no instante t = O tom uma incerteza na posigdo de Ax.

Bstc pacote & chamado de incerteza minima pois satisfaz as rolagdes de incerteza

de Heisenberg com o sinal de igualdade
A x -Ap = ;g—— (Verifique)

quo a situagdo que mais sc aproxima da fisica cléssicas

Introduzindo (36). om (35) tomos

2 .
S T (37)

1 | 1 eif o
Y (@MDY T T 4 AR

a(k)=

A integral (37) pode ser rosolvida completando o quadrado cm x do oxpoontoce

Assim cscrevemos

. - X2 _ x k—_) x)z_k_-—zsz
O;(_I;L_k)x_ma_:O(?A_x-l—l( _/_%A ( 7%)
+00
1 , - X . D s 2
aczic)) ) 1 1 o~k = -,%)2 A2 o (2Ax +1(k - _/%)Ax) dx-
(2’”“)1[2 (27 A2X)1/4 et :
Introduzindo a varigvel z = -2—X-Z-4x—- + i (k- -,—EL) Ax,
dx = 2d2x obtomos
4’502
_ 1 2 Ax - (k- p) 2 -z ‘
e ca e A =
= oo

A intcgral que aparcco om (38) & bem conhecida o d4
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oo
e"zz dga = | /J] . Assin
=00
2 D \2 Ax2
a (k) = o= A% (k=) (2_7T_)1/4 (39)

\

Vomos que a(k) gue doscreve a distribuigdo de momentum na funQQO/de on
‘da (36) & uma gaussiana com contro om —,ﬁ-— ¢ largura inversamente proporcional

a [x dc acdérdo com as rolagSos de incertozae

Introduzindo agora a(k) dado por (39) o (34) podemos obter a evolugHo
temporal do sistema.

A integral que aparcce podec novamente ser reduzida a uma gaussiana pC
lo método de completar o quadrado (faga oxplicitamente o cdlculo) e obtecmos  to
mando o0 médulo quadrado para ter a densidade de probabilidadc.

/W(xpt)/?.: l1/12 2 212 57 51/2 oxp 2 2 0.2y 2 2
(27) . Beﬂx) +1t%/4m Ax] -(x-%t) /2( Ax+ht /4mﬁx/)2
(40)

Obtemos dosta maneira uma distribuig@o de probabilidadc (om x) quo &

—_—

dada por uma gaussiana cujo centro sc desloca com velocidade —ﬁ— e cuja largu
1/2

2, “h° 42

ra dada por lﬂx -{-

———— aumenta com o tompo.
2 2
an® Ax

Bsto aumento da largura (dispers8o do pacoto de onda) pode sor intuiti

vamentc comproendido como decorrcnde do feto de toermos uma incerteza no momentum

13

A D= 2 ¢ de velocidade AV = —— logo para um tempo  suficionto
2‘[1x 2m le

mente grande devemos tor uma largura.

7

—_——0d
2m zﬁ X

1/2

2 e 42
e X
4m2 sz

Av + -

Problema = Tome uma "particula" com a massa 1lkg ¢ incertoza inicial Ax = lmm
e verifique quo o pacote quaso ndo sofrce dispersg@o comportando-sc dc
um modo que estéd de acdrdo com a fisica cléssica.

BExperimente com a massa da terra ¢ com a massa de um clectron tomando

incecrtezas zﬁlx com ordens de grandecza razodveis por cxemplo para a

terra 1 metro para o clcctron 10‘80m.



